The role of binary mask patterns in automatic speech recognition in background noise.
نویسندگان
چکیده
Processing noisy signals using the ideal binary mask improves automatic speech recognition (ASR) performance. This paper presents the first study that investigates the role of binary mask patterns in ASR under various noises, signal-to-noise ratios (SNRs), and vocabulary sizes. Binary masks are computed either by comparing the SNR within a time-frequency unit of a mixture signal with a local criterion (LC), or by comparing the local target energy with the long-term average spectral energy of speech. ASR results show that (1) akin to human speech recognition, binary masking significantly improves ASR performance even when the SNR is as low as -60 dB; (2) the ASR performance profiles are qualitatively similar to those obtained in human intelligibility experiments; (3) the difference between the LC and mixture SNR is more correlated to the recognition accuracy than LC; (4) LC at which the performance peaks is lower than 0 dB, which is the threshold that maximizes the SNR gain of processed signals. This broad agreement with human performance is rather surprising. The results also indicate that maximizing the SNR gain is probably not an appropriate goal for improving either human or machine recognition of noisy speech.
منابع مشابه
On the Role of Binary Mask Pattern in Automatic Speech Recognition
Processing noisy signals using the ideal binary mask has been shown to improve automatic speech recognition (ASR) performance. In this paper, we present the first study that investigates the role of mask patterns in ASR under varying signalto-noise ratios (SNR), noise conditions and mask definitions. Binary masks are typically computed either by comparing the local SNR within a time-frequency u...
متن کاملAsr-driven Binary Mask Estimation for Robust Automatic Speech Recognition
Additive noise has long been an issue for robust automatic speech recognition (ASR) systems. One approach to noise robustness is the removal of noise information through segregation by binary time-frequency masks; each time-frequency unit in a spectro-temporal representation of the speech signal is labeled either noise-dominant or signal-dominant. The noise-dominant units are masked and their e...
متن کاملRobust automatic speech recognition with decoder oriented ideal binary mask estimation
In this paper, we propose a joint optimal method for automatic speech recognition (ASR) and ideal binary mask (IBM) estimation in transformed into the cepstral domain through a newly derived generalized expectation maximization algorithm. First, cepstral domain missing feature marginalization is established using a linear transformation, after tying the mean and variance of non-existing cepstra...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 133 5 شماره
صفحات -
تاریخ انتشار 2013